Skip to content

fmidev/vprc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

vprc

License: MIT Python 3.12+ Status: Beta Docker Repository on Quay

Python implementation of the Koistinen & Pohjola VPR (Vertical Profile Reflectivity) correction algorithm for weather radar data. This modernization of a circa-2003 Perl codebase is designed for use in Apache Airflow workflows at FMI.

📖 Introduction · Quick Start · Configuration

Features

  • Ground clutter removal – Gradient-based filtering of low-altitude echoes
  • Spike smoothing – Boundary correction and isolated echo removal
  • Profile classification – Automatic layer segmentation (Precipitation, Altostratus, Clear Air Echo, Clutter)
  • Bright band detection – Melting layer identification using gradient analysis
  • VPR correction – Range-dependent correction factors for CAPPI products
  • TOML configuration – Flexible radar metadata management with environment variable support

Installation

Requires Python 3.12+.

# From source (development)
git clone https://github.com/fmidev/vprc.git
cd vprc
pip install -e .

# Or directly from GitHub
pip install git+https://github.com/fmidev/vprc.git

Project Structure

src/vprc/          # Package implementation
tests/             # Test suite (see tests/README.md)
docs/              # Documentation

Testing

pytest tests/

See tests/README.md for details on test structure and coverage.

Contributing

Contributions are welcome through Github.

References

Koistinen, J., and H. Pohjola, 2014: Estimation of Ground-Level Reflectivity Factor in Operational Weather Radar Networks Using VPR-Based Correction Ensembles. J. Appl. Meteor. Climatol., 53, 2394–2411, https://doi.org/10.1175/JAMC-D-13-0343.1.

About

Vertical profile of reflectivity correction

Resources

License

Stars

Watchers

Forks

Packages

No packages published