Skip to content

apache/mahout

Apache Mahout

License Python GitHub Stars GitHub Contributors

The goal of the Apache Mahout™ project is to build an environment for quickly creating scalable, performant machine learning applications.
For additional information about Mahout, visit the Mahout Home Page

Qumat

Apache Mahout

Qumat is a high-level Python library for quantum computing that provides:

  • Quantum Circuit Abstraction - Build quantum circuits with standard gates (Hadamard, CNOT, Pauli, etc.) and run them on Qiskit, Cirq, or Amazon Braket with a single unified API. Write once, execute anywhere. Check out basic gates for a quick introduction to the basic gates supported across all backends.
  • QDP (Quantum Data Plane) - Encode classical data into quantum states using GPU-accelerated kernels. Zero-copy tensor transfer via DLPack lets you move data between PyTorch, NumPy, and TensorFlow without overhead.

Quick Start

git clone https://github.com/apache/mahout.git
cd mahout
pip install uv
uv sync                     # Core Qumat
uv sync --extra qdp         # With QDP (requires CUDA GPU)

Qumat: Run a quantum circuit

from qumat import QuMat

qumat = QuMat({"backend_name": "qiskit", "backend_options": {"simulator_type": "aer_simulator"}})
qumat.create_empty_circuit(num_qubits=2)
qumat.apply_hadamard_gate(0)
qumat.apply_cnot_gate(0, 1)
qumat.execute_circuit()

QDP: Encode data for quantum ML

import qumat.qdp as qdp

engine = qdp.QdpEngine(device_id=0)
qtensor = engine.encode([1.0, 2.0, 3.0, 4.0], num_qubits=2, encoding_method="amplitude")

Roadmap

2024

  • Transition of Classic to maintenance mode
  • Integration of Qumat with hardened (tests, docs, CI/CD) Cirq, Qiskit, and Braket backends
  • Integration with Amazon Braket
  • Public talk about Qumat

2025

  • FOSDEM talk
  • QDP: Foundation & Infrastructure (Rust workspace, build configuration)
  • QDP: Core Implementation (CUDA kernels, CPU preprocessing, GPU memory management)
  • QDP: Zero-copy and Safety (DLManagedTensor, DLPack structures)
  • QDP: Python Binding (PyO3 wrapping, DLPack protocol)

Q1 2026

  • QDP: Input Format Support (PyTorch, NumPy, TensorFlow integration)
  • QDP: Verification and Testing (device testing, benchmarking)
  • QDP: Additional Encoders (angle/basis encoding, multi-GPU optimization)
  • QDP: Integration & Release (documentation, example notebooks, PyPI publishing)

Legal

Please see the NOTICE.txt included in this directory for more information.

About

Mirror of Apache Mahout

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Contributors 64